
ggplot2 geoms with support for pattern fills
Source:R/a-geom-docs.R
, R/geom-rect.R
, R/geom-bar.R
, and 12 more
geom-docs.Rd
All geoms in this package are identical to their counterparts in ggplot2 except that they can be filled with patterns.
Usage
geom_rect_pattern(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_bar_pattern(
mapping = NULL,
data = NULL,
stat = "count",
position = "stack",
...,
just = 0.5,
width = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
geom_bin_2d_pattern(
mapping = NULL,
data = NULL,
stat = "bin2d",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_bin2d_pattern(
mapping = NULL,
data = NULL,
stat = "bin2d",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_boxplot_pattern(
mapping = NULL,
data = NULL,
stat = "boxplot",
position = "dodge2",
...,
outliers = TRUE,
outlier.colour = NULL,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
notch = FALSE,
notchwidth = 0.5,
staplewidth = 0,
varwidth = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
geom_col_pattern(
mapping = NULL,
data = NULL,
position = "stack",
...,
just = 0.5,
width = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_crossbar_pattern(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
fatten = 2.5,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
geom_ribbon_pattern(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
outline.type = "both"
)
geom_area_pattern(
mapping = NULL,
data = NULL,
stat = "align",
position = "stack",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...,
outline.type = "upper"
)
geom_density_pattern(
mapping = NULL,
data = NULL,
stat = "density",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
outline.type = "upper"
)
geom_histogram_pattern(
mapping = NULL,
data = NULL,
stat = "bin",
position = "stack",
...,
binwidth = NULL,
bins = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
geom_polygon_pattern(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
rule = "evenodd",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_map_pattern(
mapping = NULL,
data = NULL,
stat = "identity",
...,
map,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_sf_pattern(
mapping = aes(),
data = NULL,
stat = "sf",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
)
geom_tile_pattern(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_violin_pattern(
mapping = NULL,
data = NULL,
stat = "ydensity",
position = "dodge",
...,
draw_quantiles = NULL,
trim = TRUE,
bounds = c(-Inf, Inf),
scale = "area",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
Arguments
- mapping
Set of aesthetic mappings created by
aes()
. If specified andinherit.aes = TRUE
(the default), it is combined with the default mapping at the top level of the plot. You must supplymapping
if there is no plot mapping.- data
The data to be displayed in this layer. There are three options:
If
NULL
, the default, the data is inherited from the plot data as specified in the call toggplot()
.A
data.frame
, or other object, will override the plot data. All objects will be fortified to produce a data frame. Seefortify()
for which variables will be created.A
function
will be called with a single argument, the plot data. The return value must be adata.frame
, and will be used as the layer data. Afunction
can be created from aformula
(e.g.~ head(.x, 10)
).- stat
The statistical transformation to use on the data for this layer. When using a
geom_*()
function to construct a layer, thestat
argument can be used the override the default coupling between geoms and stats. Thestat
argument accepts the following:A
Stat
ggproto subclass, for exampleStatCount
.A string naming the stat. To give the stat as a string, strip the function name of the
stat_
prefix. For example, to usestat_count()
, give the stat as"count"
.For more information and other ways to specify the stat, see the layer stat documentation.
- position
A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The
position
argument accepts the following:The result of calling a position function, such as
position_jitter()
. This method allows for passing extra arguments to the position.A string naming the position adjustment. To give the position as a string, strip the function name of the
position_
prefix. For example, to useposition_jitter()
, give the position as"jitter"
.For more information and other ways to specify the position, see the layer position documentation.
- ...
Other arguments passed on to
layer()
'sparams
argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to theposition
argument, or aesthetics that are required can not be passed through...
. Unknown arguments that are not part of the 4 categories below are ignored.Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example,
colour = "red"
orlinewidth = 3
. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to theparams
. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.When constructing a layer using a
stat_*()
function, the...
argument can be used to pass on parameters to thegeom
part of the layer. An example of this isstat_density(geom = "area", outline.type = "both")
. The geom's documentation lists which parameters it can accept.Inversely, when constructing a layer using a
geom_*()
function, the...
argument can be used to pass on parameters to thestat
part of the layer. An example of this isgeom_area(stat = "density", adjust = 0.5)
. The stat's documentation lists which parameters it can accept.The
key_glyph
argument oflayer()
may also be passed on through...
. This can be one of the functions described as key glyphs, to change the display of the layer in the legend.
- linejoin
Line join style (round, mitre, bevel).
- na.rm
If
FALSE
, the default, missing values are removed with a warning. IfTRUE
, missing values are silently removed.- show.legend
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.FALSE
never includes, andTRUE
always includes. It can also be a named logical vector to finely select the aesthetics to display.- inherit.aes
If
FALSE
, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g.borders()
.- just
Adjustment for column placement. Set to
0.5
by default, meaning that columns will be centered about axis breaks. Set to0
or1
to place columns to the left/right of axis breaks. Note that this argument may have unintended behaviour when used with alternative positions, e.g.position_dodge()
.- width
Bar width. By default, set to 90% of the
resolution()
of the data.- orientation
The orientation of the layer. The default (
NA
) automatically determines the orientation from the aesthetic mapping. In the rare event that this fails it can be given explicitly by settingorientation
to either"x"
or"y"
. See the Orientation section for more detail.- outliers
Whether to display (
TRUE
) or discard (FALSE
) outliers from the plot. Hiding or discarding outliers can be useful when, for example, raw data points need to be displayed on top of the boxplot. By discarding outliers, the axis limits will adapt to the box and whiskers only, not the full data range. If outliers need to be hidden and the axes needs to show the full data range, please useoutlier.shape = NA
instead.- outlier.colour, outlier.color, outlier.fill, outlier.shape, outlier.size, outlier.stroke, outlier.alpha
Default aesthetics for outliers. Set to
NULL
to inherit from the aesthetics used for the box.In the unlikely event you specify both US and UK spellings of colour, the US spelling will take precedence.
- notch
If
FALSE
(default) make a standard box plot. IfTRUE
, make a notched box plot. Notches are used to compare groups; if the notches of two boxes do not overlap, this suggests that the medians are significantly different.- notchwidth
For a notched box plot, width of the notch relative to the body (defaults to
notchwidth = 0.5
).- staplewidth
The relative width of staples to the width of the box. Staples mark the ends of the whiskers with a line.
- varwidth
If
FALSE
(default) make a standard box plot. IfTRUE
, boxes are drawn with widths proportional to the square-roots of the number of observations in the groups (possibly weighted, using theweight
aesthetic).- fatten
A multiplicative factor used to increase the size of the middle bar in
geom_crossbar()
and the middle point ingeom_pointrange()
.- outline.type
Type of the outline of the area;
"both"
draws both the upper and lower lines,"upper"
/"lower"
draws the respective lines only."full"
draws a closed polygon around the area.- binwidth
The width of the bins. Can be specified as a numeric value or as a function that calculates width from unscaled x. Here, "unscaled x" refers to the original x values in the data, before application of any scale transformation. When specifying a function along with a grouping structure, the function will be called once per group. The default is to use the number of bins in
bins
, covering the range of the data. You should always override this value, exploring multiple widths to find the best to illustrate the stories in your data.The bin width of a date variable is the number of days in each time; the bin width of a time variable is the number of seconds.
- bins
Number of bins. Overridden by
binwidth
. Defaults to 30.- rule
Either
"evenodd"
or"winding"
. If polygons with holes are being drawn (using thesubgroup
aesthetic) this argument defines how the hole coordinates are interpreted. See the examples ingrid::pathGrob()
for an explanation.- map
Data frame that contains the map coordinates. This will typically be created using
fortify()
on a spatial object. It must contain columnsx
orlong
,y
orlat
, andregion
orid
.- draw_quantiles
If
not(NULL)
(default), draw horizontal lines at the given quantiles of the density estimate.- trim
If
TRUE
(default), trim the tails of the violins to the range of the data. IfFALSE
, don't trim the tails.- bounds
Known lower and upper bounds for estimated data. Default
c(-Inf, Inf)
means that there are no (finite) bounds. If any bound is finite, boundary effect of default density estimation will be corrected by reflecting tails outsidebounds
around their closest edge. Data points outside of bounds are removed with a warning.- scale
if "area" (default), all violins have the same area (before trimming the tails). If "count", areas are scaled proportionally to the number of observations. If "width", all violins have the same maximum width.
Value
A ggplot2::Geom object.
Pattern Arguments
Not all arguments apply to all patterns.
pattern
Pattern name string e.g. 'stripe' (default), 'crosshatch', 'point', 'circle', 'none'
pattern_alpha
Alpha transparency for pattern. default: 1
pattern_angle
Orientation of the pattern in degrees. default: 30
pattern_aspect_ratio
Aspect ratio adjustment.
pattern_colour
Colour used for strokes and points. default: 'black'
pattern_density
Approximate fill fraction of the pattern. Usually in range [0, 1], but can be higher. default: 0.2
pattern_filename
Image filename/URL.
pattern_fill
Fill colour (or
grid::pattern()
/gradient fill). default: 'grey80'pattern_fill2
Second fill colour (or
grid::pattern()
/gradient fill). default: '#4169E1'pattern_filter
(Image scaling) filter. default: 'lanczos'
pattern_frequency
Frequency. default: 0.1
pattern_gravity
Image placement. default: 'center'
pattern_grid
Pattern grid type. default: 'square'
pattern_key_scale_factor
Scale factor for pattern in legend. default: 1
pattern_linetype
Stroke linetype. default: 1
pattern_option_1
Generic user value for custom patterns.
pattern_option_2
Generic user value for custom patterns.
pattern_option_3
Generic user value for custom patterns.
pattern_option_4
Generic user value for custom patterns.
pattern_option_5
Generic user value for custom patterns.
pattern_orientation
'vertical', 'horizontal', or 'radial'. default: 'vertical'
pattern_res
Pattern resolution (pixels per inch).
pattern_rot
Rotation angle (shape within pattern). default: 0
pattern_scale
Scale. default: 1
pattern_shape
Plotting shape. default: 1
pattern_size
Stroke line width. default: 1
pattern_spacing
Spacing of the pattern as a fraction of the plot size. default: 0.05
pattern_type
Generic control option
pattern_subtype
Generic control option
pattern_xoffset
Offset the origin of the pattern. Range [0, 1]. default: 0. Use this to slightly shift the origin of the pattern. For most patterns, the user should limit the offset value to be less than the pattern spacing.
pattern_yoffset
Offset the origin of the pattern. Range [0, 1]. default: 0. Use this to slightly shift the origin of the pattern. For most patterns, the user should limit the offset value to be less than the pattern spacing.
Examples
if (require("ggplot2")) {
# 'stripe' pattern example
df <- data.frame(level = c("a", "b", "c", 'd'), outcome = c(2.3, 1.9, 3.2, 1))
gg <- ggplot(df) +
geom_col_pattern(
aes(level, outcome, pattern_fill = level),
pattern = 'stripe',
fill = 'white',
colour = 'black'
) +
theme_bw(18) +
theme(legend.position = 'none') +
labs(
title = "ggpattern::geom_col_pattern()",
subtitle = "pattern = 'stripe'"
)
plot(gg)
# 'pch' pattern example
gg <- ggplot(mtcars, aes(as.factor(cyl), mpg)) +
geom_violin_pattern(aes(fill = as.factor(cyl),
pattern_shape = as.factor(cyl)),
pattern = 'pch',
pattern_density = 0.3,
pattern_angle = 0,
colour = 'black'
) +
theme_bw(18) +
theme(legend.position = 'none') +
labs(
title = "ggpattern::geom_violin_pattern()",
subtitle = "pattern = 'pch'"
)
plot(gg)
# 'polygon_tiling' pattern example
gg <- ggplot(mtcars) +
geom_density_pattern(
aes(
x = mpg,
pattern_fill = as.factor(cyl),
pattern_type = as.factor(cyl)
),
pattern = 'polygon_tiling',
pattern_key_scale_factor = 1.2
) +
scale_pattern_type_manual(values = c("hexagonal", "rhombille",
"pythagorean")) +
theme_bw(18) +
theme(legend.key.size = unit(2, 'cm')) +
labs(
title = "ggpattern::geom_density_pattern()",
subtitle = "pattern = 'polygon_tiling'"
)
plot(gg)
}